46 research outputs found

    Filtenna Integration Achieving Ideal Chebyshev Return Losses

    Get PDF
    This paper demonstrates that it is possible to find an ideal filter response (Chebyshew, Butterworth,..) considering the antenna as the last resonator of a filter under certain circumstances related with the antenna performance and the bandwidth of the filtenna device. If these circumstances are not accomplished, we can achieve excellent performance as well, by means of an iterative process the goal of which is defined by either a filter mask or a classical filter function itself. The methodology is based on the conventional coupling matrix technique for filter design and has been validated by fabricating a microstrip prototype using hairpin resonators and a rectangular patch antenna

    Nonlinear Performance of BAW Filters Including BST Capacitors

    Get PDF
    This paper evaluates the nonlinear effects occurring in a bulk acoustic wave (BAW) filter which includes barium strontium titanate (BST) capacitors to cancel the electrostatic capacitance of the BAW resonators. To do that we consider the nonlinear effects on the BAW resonators by use of a nonlinear Mason model. This model accounts for the distributed nonlinearities inherent in the materials forming the resonator. The whole filter is then implemented by properly connecting the resonators in a balanced configuration. Additional BST capacitors are included in the filter topology. The nonlinear behavior of the BST capacitors is also accounted in the overall nonlinear assessment. The whole circuit is then used to evaluate its nonlinear behavior. It is found that the nonlinear contribution arising from the ferroelectric nature of the BST capacitors makes it impractical to fulfill the linearity requirements of commercial filters

    A New Method to Extract Dental Pulp DNA: Application to Universal Detection of Bacteria

    Get PDF
    BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7%) from 12 individuals (14%). Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology

    Tone injection‐based

    No full text

    Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    No full text
    Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA

    Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem

    No full text
    Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated communities. We assessed the influence of within-species genetic variation in the tree Brosimum alicastrum (Moraceae) on associated epiphytic and invertebrate communities in a neotropical rainforest. We found a significant positive association between genetic distance of trees and community difference of the epiphytic plants growing on the tree, the invertebrates living among the leaf litter around the base of the tree, and the invertebrates found on the tree trunk. This means that the more genetically similar trees are host to more similar epiphyte and invertebrate communities. Our work has implications for whole ecosystem conservation management, since maintaining sufficient genetic diversity at the primary producer level will enhance species diversity of other plants and animals

    A comparative study of the antibacterial properties of the different parts of Garcinia mangostana (Mangosteen) fruit extracts against Staphylococcus aureus and Escherichia coli using the maceration method

    No full text
    The study followed a Randomized Control Trial research design with five (5) treatments, the first two being the positive and negative control treatments and the remaining three treatments for each mangosteen fruit extract (pericarp, pulp, and seed). The positive control group consists of an antibiotic (1 μg Oxacillin for Staphylococcus aureus and 30 μg Amikacin for E.coli) while the negative control group consists of a blank sample-free disc. The plant extraction method utilized was maceration and the antimicrobial assay used in the study is the disc diffusion method. One-way ANOVA (Analysis of Variance) and Multiple Comparisons (Tukey/Post Hoc Test) was used in order to determine the significant difference among the treatments. Results of the test had revealed that the extracts had shown mild inhibitory activity against Staphylococcus aureus, with the mangosteen pericarp extract yielding the largest zone of inhibition, and very mild inhibitory activity against Escherichia coli, with all of the extracts exhibiting the same measurements of the zones of inhibition. Further analysis of the data showed that upon comparison, there is a significant difference between the measurements of the zones of inhibition exhibited by all of the treatments for both bacteria
    corecore